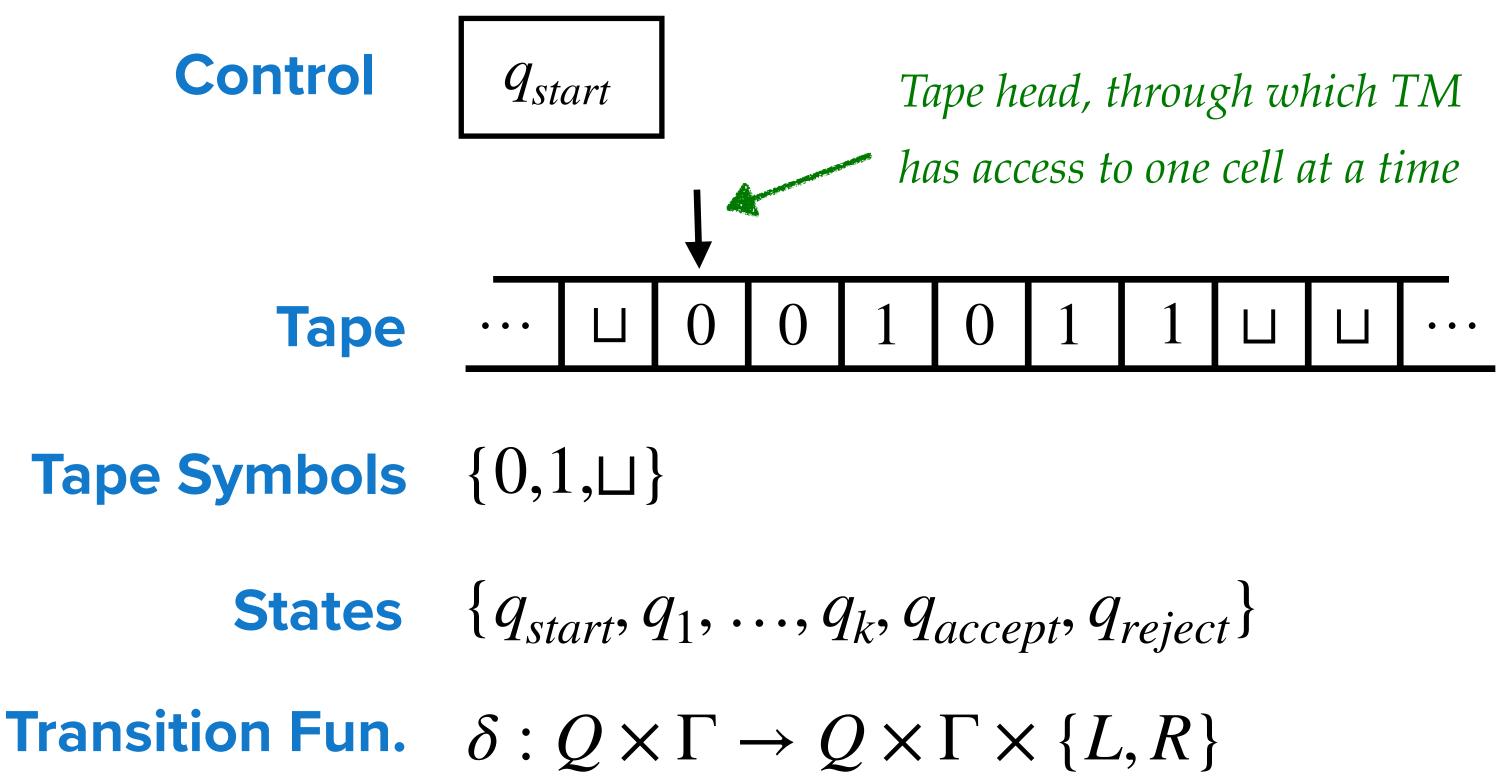
Lecture 39

Turing Machines

Turing Machines: How do they look like?

Turing machines are similar to a DFAs but with an unrestricted memory.



Turing Machines: History

Hilbert's Entscheidungsproblem (1928):

the given rules?

What's an effective procedure?

Emil Post's Post System, etc.

Negative answer to Entscheidungsproblem:

unsolvable as well on \mathscr{A} machines.

Is there an "effective procedure" that given a set of axioms, some rules, and a mathematical proposition decides whether the mathematical proposition is provable from the axioms using

Several candidates came in 30s and later, namely, Church's λ -calculus, Turing's \mathscr{A} machine,

Turing presented an unsolvable problem called Halting Problem on \mathscr{A} machine and reduced Halting Problem to Entscheidungsproblem. Thus proving Entscheidungsproblem

Turing Machines: Significance

Why Turing machines are important?

Church-Turing Thesis: Every physically realizable computational device can be simulated by a Turing machine.

model, then it can be solved on Turing machines as well.

- Due to its simple mathematical nature TMs are used to prove impossibility results such as
 - Proving some problems are unsolvable for computers.
 - Proving existence of problems that can be solved in $O(n^2)$ time, but not in O(n) time.

That is, if a problem can be solved on any other physically realizable computational

Turing Machines: Formal Definition

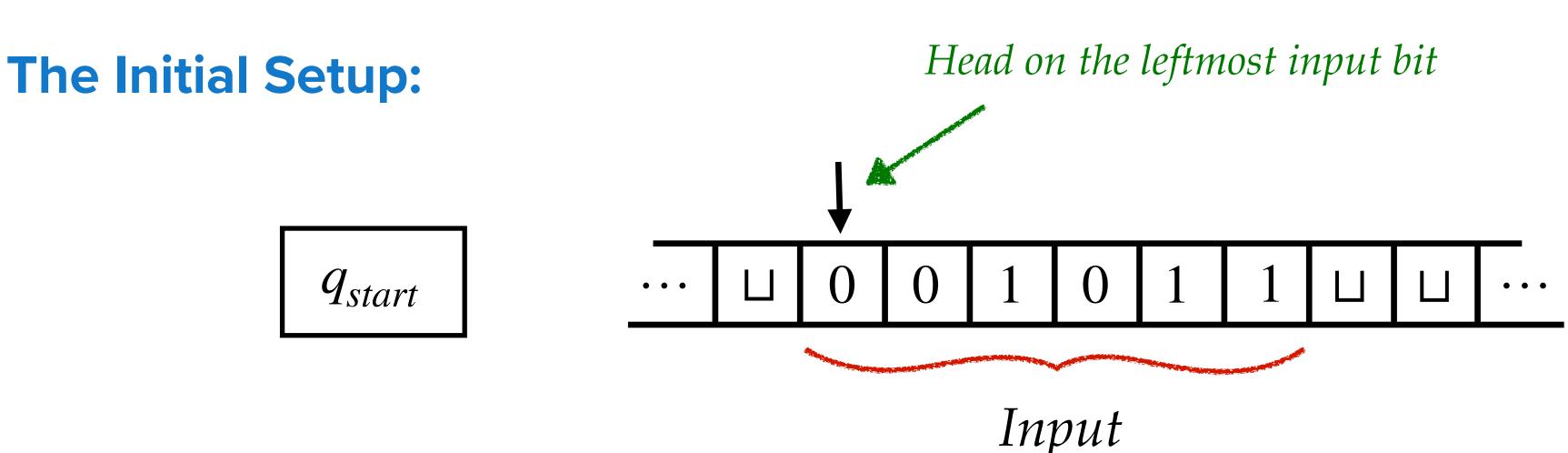
- **Definition: Turing machine** is a 4-tuple, $(Q, \Sigma, \Gamma, \delta)$, where
 - Q is the finite set of states that contains special states q_{start} , q_{accept} , and q_{reject} . • Σ is a finite set of input symbols. Usually, $\Sigma = \{0,1\}$.

 - Γ is a finite set of tape symbols such that blank symbol $\sqcup \in \Gamma$, and $\Sigma \subseteq \Gamma$.
 - $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function.

are defined for q_{accept} and q_{reject} .

Note: Turing machine halts when it reaches q_{accept} or q_{reject} . Hence, no transitions

Turing Machines: Working



Turing Machine in One Step:

- Gets the state from control and reads the symbol under head.
- If the state is q_{accept} or q_{reject} , it halts. Otherwise it uses transition function to:
 - Change (or not) the symbol under the head.
 - Change (or not) the state in the control.
 - Move the tape head to left or right.

Decidable and Recognisable Languages

- **Definition:** A language L over Σ is called **Turing decidable** or **decidable** if there exists a TM *M* such that for every $x \in \Sigma^*$
 - $x \in L \implies M$ on input x halts with q_{accept}
 - $x \notin L \implies M$ on input x halts with q_{reject}
- **Definition:** A language L over Σ is called **Turing recognisable** or **recognisable** if there exists a TM M such that for every $x \in \Sigma^*$
 - $x \in L \implies M$ on input x halts with q_{accept}
 - $x \notin L \implies M$ on input x halts with q_{reject} or it enters a loop

Note: A Turing machine on an input can have three outcomes: accept, reject, or loop.

